
Ryan Zurrin December 15th, 2019
John Osthoff
ENT 233 Digital Circuits

FINAL PROJECT / Coffee & Cocoa Vending Machine
The Design Process from First Ideas to Simulation Implementation.

THE STRUGGLE IS REAL
By Ryan Zurrin

1. Project introduction

For the final project in digital circuits we were giving an outline and project requirements which had to be

fulfilled for the project to be considered a success. The Final project is to be a Coffee and Hot Cocoa Vending

machine. The requirements for this design are as followed:

• Sensors which must detect if there is a current supply in the machine of the following items:

1. Cups (a requirement for any of the items to be dispensed)

2. Sugar

3. Cream

4. Coffee

5. Cocoa

6. Change Available

• Inputs which will be simulated using push buttons:

1. $.25 cents (the quarter slot)

2. $1 dollar

3. $5 dollar

4. $10 dollar

5. Coffee selected

6. Cocoa selected

7. Cream selected

8. Sugar selected

• Indicators which will be logic indicators, LED’s, and 7-segment displays:

1. Decimal display of money added to machine

2. Product availability indicator

3. Successful Vend

4. Unsuccessful Vend

5. Change due as decimal display

6. Any indicators within the circuit that would help a technician with any troubleshooting or repair

procedures

There is a lot to think about and consider in this design and many ways to approach a working solution. When I was first

trying to reason out how I was going to approach this I really didn’t know exactly what to do. With so many things to

think about, where do I even start? I just read and reread the requirements and remembered our instructor John talking

a lot about modular design and how we should approach the design in smaller chunks breaking it up essentially making

it all manageable. If this is the best approach, then what modules will there be and how will they all work? I needed to

start with the basics, to get out the pencil and paper and start scribbling ideas down as well as put together a flow chart

of the process and how it should play out. From this I should be able to determine the order of my design and which

modules should take on a greater precedence. I will do this based on circuit design difficulty levels and how much other

parts of the design rely on the module(s). The documentation that follows is the complete process from beginning to

end of this project and how I designed a working solution which should work in a real-world prototype if it was to be

built up based on this circuit design.

Things to note, this design was built using multiSIM software which is decent design software but there were some

minor setbacks while moving forward. First off, clock speeds in a simulated circuit do not reach high speeds so using

ripple counters to keep track of things in the simulation ended up being much slower than I would have liked them to

be. And simulation memory size had to be upped to 30GB to accommodate the simulation data being produced.

In the beginning the Boss gave us The Design requirements,

And these requirements were void and without any form, there was an emptiness upon the schematic, but the spirit of

ideas ran deep, and from the dark depths of emptiness a schematic was filled with function and logic, So when the Boss

Man said let there be cocoa there was, and likewise when he said let there be coffee there also was, of course supply

line dependent that is. And when the Boss seen his ideas become real, he was pleased by this and he drank, coffee of

course, all while smiling knowing yet again, another great circuit has been made. Now Let the design games begin!

FLOWCHART (kind of) for hot cocoa and coffee vending machine.

This isn’t an actual flow chart but just a flow of what should kind of be happening and when. It gives me a general idea of

the types of modules Ill need to work on in order to break down the design properly that is. What I’m thinking when

looking at this is a display for money and either the same or separate display for the change, though I am pretty sure it

will need all its own ICs and circuitry. I am looking at a module for the .25c, the $1’s, $5’s, and $10’s. It will need to do

some kind of math to keep a running total so that will be part of the display module I believe and then we will be using a

comparator chip of some kind to make sure we are validating the money input against the price of items which will be

adjustable by dipswitches on the internal components of the board. There will also be a module for the stock of items

and the verifying of the costumer’s choice against the stock line as I like to call it. If stock line HIGH there are items, if

low there are not. So there will need to be some kind of way to verify that and of course no good vending machine was

ever built that didn’t have a manual coin or money return lever or button that would release the money that was put in

the machine if the costumer decided that they didn’t want to buy an item. So, in all I am looking at about 5 modules I

believe. Display the money in, display the money-out, count the money, verify the money and items, price setting and

item stock, and of course the trusty old coin return. Let us now look at some of the modules I have used and see what

they are about one at a time and then we will look at the joining of these modules.

MODULES USED

The Display Module

This is the layout of where the money in the machine

will be displayed. I had to decide how I was going to

make this work properly, that was the fun and tricky

part. What do I know, let’s start there shall we? I

know the machine will take quarters, dollars, ones,

fives and tens. That means that the last two will be

for the cents that get inserted and if its only quarters

that means the last two need to go from 00, to 25, to

50 to 75 and back to zero. That tells me the very last

display will only ever have to show two states. A 0

and a 5. So, all I need to do is come up with a way for

it to turn on a 5 whenever there is a 1 in the LSB spot.

That shouldn’t be too bad. Maybe a counter that

sends a high to the 0101 on the 7447 that is

controlling the penny spot display. I also know that

the next one will have to go in a 0, 2, 5, 7, back to 0

pattern and it will have to increment the one next to

it by one every time it counts 4. Because four quarters

is a dollar of course, we all know that. So if we have

the quarters incrementing the dollars we will need the dollars to increment the tens place which holds its position as the

MSB in this system so using these 7447s we know they are counting up to 9 in BCD(binary coded decimal) and then they

will need to go back down to one so using just a binary count won’t really work out because as soon as we get to 1010

there will be an error on the display. This can be circumvented be building up a circuit that can add 6 to the count which

is just saying to go back to zero all while adding one to the more significant bit living next door. There was a great example

in our books that worked wonderful in the later design when I decided to finally add this. Of course, I went and tried to

do this with some other techniques at first and though they worked in certain circumstances they didn’t work in all. This I

will explain in more detail as this report gets going on the intricacies of

this circuit. So, my first order of business is to make the counters for the

quarter spot display and take it from there.

COUNTER MODULE #1 (0, 5)
This counter will count in a sequence of 0, 5. My
thinking is that every time someone hits the quarter
button that a pulse will be sent into this and it will
then send the signals needed to the last display so if
I hook up another counter that also gets incremented
when the quarter button is pushed and I
have that counter using a sequence of
0, 2, 5, 7, that should essentially move
the last two displays in the fashion
needed for this project.

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

VCC

VCC

VCC

C1

1

B1 A1

C'

1

B'

1

A'

1

CLK

Circuit design for a statemachine counter with a seuence of 0, 5

 D(freq): --

COUNTER MODULE #2 (0, 2, 5, 7)
This is the counter that will help with incrementing the
Tens place penny display. My thinking is to send a
clk pulse into this and the 0,5 counter and that
should cycle through the last two display with a
Display showing 00, 25, 50, 75, 00. I will need to
start considering the means I will be using to
increment the ones place now besides just
hitting the 1 which you can, but we must
remember that 4 quarters are a dollar
as well so any time we get four
of them we need the dollar to
go up one more.

Incrementing the Dollar:
So, my initial thinking was that this should be straight forward with two counters already built both being tied to the
same pulse from the quarter button, all I would need to determine is where to grab a signal from the BUS now. So, what
I did is make a counter that would count to four and I would take the HIGH when it got to four and send it to the one
counter for a 4:1 count. This circuit timer looks something like this:

This is the counter I had hooked up to the one counter so that every time four quarters were added the system it would

increment the one by one and this in turn was connected to the display that was showing the ones place. To note; this 7-

segment display had the decimal grounded out so it would show all the time essentially providing a way to see the

numbers in money format to two decimal places as would be required for a proper working money display. I did

however run into one issue with this setup. In testing when I would add four quarters to the system, the one counter

would go up by one like expected but if I didn’t add a fifth quarter to the system, I wouldn’t be able to add any dollars at

all. This was the result of the fact that the quarter counter wasn’t being reset or anything it would sit at a four and this

was actually holding the line HIGH so when I was trying to add another dollar it wouldn’t register at all and that wasn’t a

good thing. So, I had to find a way to send a single pulse that would go HIGH and then go back LOW after, this way the

system wasn’t being tied down by unwanted signals. I did come up with a solution to this and it involved adding a little

something to this counter so instead of sending a signal out to the BUS itself it would go through a different circuit which

would reset itself and give me the desired results. Let us first have a look at what I was using for the dollar counter and

then a look at the addition to the above circuit that was used to obtain my accurate count.

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

VCC

VCC

C1

1

B1 A1

C'

1

B'

1

A'

1

Circuit design for a statemachine counter with a seuence of 0, 2, 5, 7

CLK

 D(freq): --

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

quarter counter that sends a pulse out to the one counter to go up 1

quarter_in
pulse

quarter_out
pulse on 4

The Dollar Counter

What you are looking at there is a series of decade counters so that when one gets to 9 and turns back over to 0 it will

increment the MSB counter to one so for every 10 of the LSB we get a 1 count on the MSB. This is used with the 7-

segment displays as they do not use binary count above 1001(9), so I was hoping by tying these into the displays that

everything would work out for me. So far everything was going well as to be expected and this was counting ones in and

was adding one with 4 quarters and with the help of this I was able to add a dollar after 4 quarters as well:

Here is how I was able to keep the line free for the ones after a qtr. four count.

1 1 11 1 1 1 1

MSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

LSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3from qtr_out

pulse

from dollar

from sys reset

D Q

~Q

RESET

CLK

SET

This just ties into the quarter counter like so:

And all that little addition does is take a HIGH signal that is holding HIGH and puts a single pulse out on the BUS, so I

don’t end up tying up the line with a HIGH that I just really needed for a nanosecond. I ended up using this in a couple

different area of my circuit and I was happy with the results of this little doodad. I think I will call it the Buzz Killer, if a

HIGH can be represented as a Buzz this little doohickey definitely kills the Buzz. Bad joke I know, sorry. Back to the circuit

now. After hooking up these things we should have a working display. We have counters for the quarters, for the dollars

and with the two-decade counters if I tie the MSB to the tens place display there should be no problems.

 I would like to add that this was NOT my first approach. I had originally built up a ring counter and was trying to use that

but with a ring counter on the initial reset it starts as 1000 and then 0100 to 0010, 0001, 0000, back to 1000. And my

initial thinking was to grab the signal when it got back around but being reset in that spot was causing me design

problems that seemed more challenging to work out then what it was worth, especially knowing there were far simpler

solutions then making that work. The problem kept occurring that the ring counter would be off by one and looking back

I realize now that it was because the decade counter I was trying to pulse was negative edge triggered and because this

was still early in the design process I had not yet developed the Buzz Killer or I could of used that to solve the problem as

well but at the time I scrapped the idea of the ring counter and moved to the counter I showed previously in the write

up and when I was having problems with this one as well that is when I decided I need to design something that would

take a active HIGH and just make a pulse out of it, so yeah that is the history of the Buzz Killer.

With the quarters and the ones taken care of and working properly it was time to move up to the fives. So what this

button would need to do is make the dollar display a five if you hit it once and a zero if you hit it twice and a five again if

you hit it a third time so essentially I was needing a 0, 5 from it. Hmmm, didn’t I already have a shift counter built up to

do just that? I did, now, how could I use this, if possible. This was my original thinking. But what I ended up doing was

creating series of four JK flipflops set to parallel load and I also had an output line from each of these locations that

went up to a 7483, 4 bit adder with fast carry where it would take in the 0101 and then output the 0101 where I would

grab the 0101 with the 7447 for decoding into the proper 5 on the 7 segment display. So that was fine and dandy but

how should I get it to go to 10 then if someone puts in two fives? Well time for another shift counter. This time with a

sequence of 0000, 0101, 1010, 1111, 0000 etc. if I took the MSB when it went to 10 and sent this up the BUS to the ten

spot display and told it to show a one and the five would be gone because the bits feeding the adder would drop to a 0, I

should be able to get my 10 up on the displays. Here are a couple of these new counters and PL JK FF’s I was building

and working with in my design:

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR
2

D Q

~Q

RESET

CLK

SET

These here are the JK flipflops I was using to add to the 7483 in order to get it to put out a 0101 for decoding by the

7447 into BCD for the 7 segment displays. This is probably not a great design solution and I believe may have led to

design complications further down the line. But what I believe is that though not the best this does become a good

option for adding some form of system redundancy for making sure a “thing” happened no matter what.

The nest circuit is the shift counter counting in fives from zero up to fifteen. 0, 5, 10, 15, 0.

As well to note; in my early designs I had hooked into the bus a 74194 Universal shift register because I was thinking I

may want to parallel load it with data as its being sent in by the money buttons where could rig it to parallel load out to

some JKs for transport to the 8 bit twos complement adder / subtractor that I had yet to fully realize in these early

preliminary stages but I was always trying to think a bit ahead and scheme up ways to accomplish tasks at hand, and the

task at hand was make the display work with those buttons, worry about the math later, right? Wrong as I came to find

out real fast, displaying numbers using logic and doing the proper math as I went was something I should have been

thinking more about.

VCC

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

D

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Buttons

Bus1_1

D
Q
(1
2
6
)

C
Q
(1
1
6
)

B
Q
(1
2
2
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

C
Q
_
b
a
r(
11
8
)

B
Q
_
n
o
t(
1
2
3
)

AQ_not(125)

A
Q
(1
2
4
)

B
Q
_
n
o
t(
1
2
3
)

C
Q
(1
1
6
)

AQ_not(125)
BQ_not(123)

AQ(124)

CQ(116)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

D
Q
_
b
a
r(
1
2
7
)

B
Q
_
n
o
t(
1
2
3
)

A
Q
_
n
o
t(
1
2
5
)

B
Q
(1
2
2
)

D
Q
(1
2
6
)

A
Q
(1
2
4
)

C
Q
(1
1
6
)

D
Q
_
b
a
r(
1
2
7
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

V
C
C
(V
C
C
)

D
Q
(1
2
6
)

B
Q
(1
2
2
)

C
Q
_
b
a
r(
11
8
)

1 1 1

DQ(126)

CQ(116)

BQ(122)

reset(83)

V
C
C
(V
C
C
)

C
Q
_
b
a
r(
11
8
)

D
Q
_
b
a
r(
1
2
7
)

1

AQ(124)

clk(121)

clk(121)

 D(freq): --

 D(freq): --
 D(freq): --

 D(freq): --
 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --
 D(freq): --

 D(freq): --

 D(freq): --

 D(freq): --

U48A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U48B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7 U39A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U39B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

Next, I want to show a little page sized example of the schematic thus far in the design process. This is a great example

of early on designs and how they evolve along a path depending on the project requirements. One last thing before the

full-page view is for the ten button all I did was use a JK FF in toggle so when someone hit the button it would toggle on

sending a signal to the display to show a 1 on screen. The JK was set up like this:

I had the signal coming into an inverter, but it was an NOR gate with the pulse going to both gate inputs so when it went
low it would send a HIGH toggling it to Q=1 Q’=0. This was an original design relic that got removed in later revisions of
the design. I believe I had originally had an active LOW system which I didn’t go with and some of the early modules and
ideas I used ended up making their way to the schematic to ultimately be removed when trouble started occurring. It
isn’t wise to mix the two either, well maybe with a reset but I don’t think you would want an active low ten button and
an active high one and five and then an active float quarter button, kidding. Unless, Hmm ‘an active float’??
Can you have an active float so when you dropped into a float state you trigged an event or sequence of some sort?
Things to ponder later, I guess. Well without any further ado here is one of the earliest designs I had up and running for
the display and money button module:

J Q

~QK

RESET

CLK

SET

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

U9

7447N

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A B C D E F G

CA

HA B C D E F G

CA

H A B C D E F G

CA

H A B C D E F G

CA

H

1
(6
9
)

2
(7
0
)

3
(7
1
)

4
(7
2
)

5
(7
3
)

6
(7
4
)

7
(7
5
)

8
(2
5
)

9
(2
6
)

1
0
(2
7
)

11
(2
8
)

1
2
(2
9
)

1
3
(3
0
)

1
4
(3
1
)

1
5
(3
2
)

1
6
(3
5
)

1
7
(3
3
)

1
8
(3
4
)

1
9
(4
2
)

2
0
(4
3
)

2
1
(4
4
)

2
2
(4
6
)

2
3
(4
1
)

2
4
(4
7
)

2
5
(4
9
)

2
6
(4
5
)

2
7
(4
8
)

2
8
(5
0
)

1(69)

2(70)

3(71)

4(72)

5(73)

6(74)

7(75)

8(25)

9(26)

10(27)

11(28)

12(29)

13(30)

14(31)

15(32)

16(35)

17(33)

18(34)

19(42)

20(43)

21(44)

22(46)

23(41)

24(47)

25(49)

26(45)

27(48)

28(50)

$10

.25c

VCC

VCC

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

C1 B1 A1

C'

1

B'

1

A'

1

Circuit design for a statemachine counter with a seuence of 0, 5

F

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

E

2J 2Q

~2Q2K

~2CLR

2CLK

~2PR

D

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

F
E D

F' E' D'

Circuit design for a statemachine counter with a seuence of 0, 2, 5, 7

2
9
(5
6
)

3
4
(6
5
)

3
5
(6
8
)

35(68)
34(65)
29(56)

3
6
(9
0
)

3
7
(8
7
)

3
8
(8
0
)

36(90)
37(87)
38(80)U14

74LS90D

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

39(93)
40(94)
41(96)
42(97)

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

Ring Shift Counter

99(83)

9
9
(8
3
)

9
9
(8
3
)

reset
99(83)

43(38)

43(38)

A
2

8

B
2

7

A
1

1
0

C
0

1
3

B
1

1
1

S
4

1
5

S
3

2

C
4

1
4

A
4

1

B
4

1
6

A
3

3

B
3

4

S
2

6

S
1

9

39(93)
40(94)
41(96)
42(97)

U37

74LS194D

A
3

B
4

C
5

D
6

SL
7

QA
15

QB
14

QC
13

QD
12

SR
2

~CLR
1

S0
9

S1
10

CLK
11

44(85)
45(98)
46(99)
47(101)

4
7
(1
0
1
)

4
6
(9
9
)

4
5
(9
8
)

4
4
(8
5
)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

G
N
D
(0
)

G
N
D
(0
)

f iv e(36)

30(107)
31(104)
32(103)
33(102)V

C
C
(V
C
C
)

U48A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U48B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7 U39A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U39B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

9
9
(8
3
)

fi
v
e
(3
6
)

fi
v
e
(3
6
)

V
C
C
(V
C
C
)

.25(39)

.2
5
(3
9
)

.25(39)

c
lk
(7
8
)

clk(78)
auto clk test line

money buttons

Buttons

c
lk
(7
8
)

99(83)

51(109)

52(111)

5
1
(1
0
9
)

5
2
(1
11
)

one(84)

47(101)
46(99)
45(98)
44(85)

0, 5 counter

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

D

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Buttons

Bus1_1re
s
e
t(
8
3
)

D
Q
(1
2
6
)

C
Q
(1
1
6
)

B
Q
(1
2
2
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

C
Q
_
b
a
r(
11
8
)

B
Q
_
n
o
t(
1
2
3
)

AQ_not(125)

A
Q
(1
2
4
)

B
Q
_
n
o
t(
1
2
3
)

C
Q
(1
1
6
)

AQ_not(125)
BQ_not(123)

AQ(124)

CQ(116)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

D
Q
_
b
a
r(
1
2
7
)

B
Q
_
n
o
t(
1
2
3
)

A
Q
_
n
o
t(
1
2
5
)

B
Q
(1
2
2
)

D
Q
(1
2
6
)

A
Q
(1
2
4
)

C
Q
(1
1
6
)

D
Q
_
b
a
r(
1
2
7
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

V
C
C
(V
C
C
)

D
Q
(1
2
6
)

B
Q
(1
2
2
)

C
Q
_
b
a
r(
11
8
)

1 1 1

DQ(126)

CQ(116)

BQ(122)

reset(83)

V
C
C
(V
C
C
)

C
Q
_
b
a
r(
11
8
)

D
Q
_
b
a
r(
1
2
7
)

1

99(83)

clk(78)

f iv e(36)

AQ(124)

clk(121)

clk(121)

Bus1

1
3
3
(1
2
6
)

1 1 1 1 1 1 11

MSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

LSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
399(83)

133(126)

one(84)

led1(145)

led1(145)

J Q

~QK

RESET

CLK

SET

99(83)

ten(77)

te
n
(7
7
)

$5

if ten(51)

if ten(51)

if ten(51)
$1

A Project Evolves, in comes the MATH of it all.

With the display working like it should when someone hits one of the buttons, for the most part anyway there were a

couple issues with it when someone put in all quarters up to ten it didn’t change over like it should or if you added a five

and then some quarters and ones up over 1010(10) again and things got screwy I guess you could say. I knew from the

tips and from our fabulous leader John Osthoff that the solution lay on page 290 of our text books in the way of adding

0110(6) to the 1010(10) to make it go back to zero, or one or any of the acceptable BCD digits. But I wasn’t exactly there

yet in my design even though I should have already had that worked in it took me a few designs before fully

implementing this into the design. My first order of business, only because I knew knowing an exact count of quarters

was essential in the doing of the math for the return change, or at least I thought that at the time when really all I

needed was the binary representation of these and not an actual counting down or up like my design does, it counts. So,

for the dollar that is 0100(4) quarters and a quarter is of course 0001(1) and a five would be 10100(20) quarters, so that

would make the ten-dollar button represent 101000(40) quarters or in my mind 40 clock pulses. How could I make one

clock pulse turn into 4 or 20 or 40? With a clock enable using a toggle JK flipflop rigged to a shift counter counting up to

whatever I need by running an AND gate coming from the bits I need it to stop at I can send that signal back into the JK

to turn it back off. If I just grab the clock pulses as they are sent into the counter and use that to drive another counter

that doesn’t reset and keeps a running total of all the timers outputs added together I would have my total quarter

count in binary. I needed to build more counters. So, let me show you each of these counters and just to note after all

has been said and done, I could have shaved one FF(flip flop) off of the five counter. Not sure why I got the sixth bit in

there that is never used because it always resets after getting to 20. Speaking of the five counter here it is for you in all

its glory:

And next let’s see the ten counter:

Yup you guessed it, they are the same counter just set to stop at different points in the count. One counts to 20 the

other counts to 40. Which in simulation time is like 5 minutes. I imagine that in a real circuit that these times wouldn’t

barely be noticeable and would be fully acceptable in a vending machine type system. Maybe not so in something like a

aircraft or military grade circuit but for you average 9 to5 40 hour a week circuit it should fully do the trick.

With all these hooked in and counting I just needed one more counter right? The one to keep the total of all these

counters. So I just used one more of these except it didn’t have a stopper on it so to speak it would just keep counting

until its bits got full and then would restart all over again. The next page is a view of the schematic with all these

counters hooked in.

Bus1_3

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

q0(167)

q
1
(1
8
0
)

q
2
(1
7
9
)

q
3
(1
6
4
)

q
4
(1
7
7
)

q
5
(1
6
1
)

msb(167)

J Q

~QK

RESET

CLK

SET

m
s
b
(1
6
7
)

q
1
(1
8
0
)

q
2
(1
7
9
)

q
3
(1
6
4
)

q
4
(1
7
7
)

q
5
(1
6
1
)

D Q

~Q

RESET

CLK

SET

1234

1234

1

 D(freq): --

0

 D(freq): 500 kHz

0

 D(freq): 250 kHz

0

 D(freq): 125 kHz

0

 D(freq): --

0

 D(freq): --

0

 D(freq): --

1

 D(freq): --

0

 D(freq): --

 D(freq): --

 D(freq): --

Bus1_2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

q0(193)

q
1
(1
9
2
)

q
2
(1
8
1
)

q
3
(1
7
8
)

q
4
(1
7
2
)

q
5
(1
6
6
)

msb(193)

m
s
b
(1
9
3
)

q
1
(1
9
2
)

q
2
(1
8
1
)

q
3
(1
7
8
)

q
4
(1
7
2
)

q
5
(1
6
6
)

D Q

~Q

RESET

CLK

SET

enable10

clock

toqtr2

uniqueout2

uniqueout2

crazy10

J Q

~QK

RESET

CLK

SET
10enabled

0

 D(freq): --

0

 D(freq): --

0

 D(freq): --

0

 D(freq): --

0

 D(freq): --

0

 D(freq): --

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

U9

7447N

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A B C D E F G

CA

HA B C D E F G

CA

H A B C D E F G

CA

H A B C D E F G

CA

H

1
(6
9
)

2
(7
0
)

3
(7
1
)

4
(7
2
)

5
(7
3
)

6
(7
4
)

7
(7
5
)

8
(2
5
)

9
(2
6
)

1
0
(2
7
)

11
(2
8
)

1
2
(2
9
)

1
3
(3
0
)

1
4
(3
1
)

1
5
(3
2
)

1
6
(3
5
)

1
7
(3
3
)

1
8
(3
4
)

1
9
(4
2
)

2
0
(4
3
)

2
1
(4
4
)

2
2
(4
6
)

2
3
(4
1
)

2
4
(4
7
)

2
5
(4
9
)

2
6
(4
5
)

2
7
(4
8
)

2
8
(5
0
)

1(69)

2(70)

3(71)

4(72)

5(73)

6(74)

7(75)

8(25)

9(26)

10(27)

11(28)

12(29)

13(30)

14(31)

15(32)

16(35)

17(33)

18(34)

19(42)

20(43)

21(44)

22(46)

23(41)

24(47)

25(49)

26(45)

27(48)

28(50)

$10

.25c

VCC

VCC

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

C1 B1 A1

C'

1

B'

1

A'

1

Circuit design for a statemachine counter with a seuence of 0, 5

F

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

E

2J 2Q

~2Q2K

~2CLR

2CLK

~2PR

D

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

F
E D

F' E' D'
Circuit design for a statemachine counter with a seuence of 0, 2, 5, 7

2
9
(5
6
)

3
4
(6
5
)

3
5
(6
8
)

35(68)
34(65)
29(56)

3
6
(9
0
)

3
7
(8
7
)

3
8
(8
0
)

36(90)
37(87)
38(80)

U14

74LS90D

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

39(93)
40(94)
41(96)
42(97)

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

Ring Shift Counter

99(reseter)

9
9
(r
e
s
e
te
r)

99(reseter)

reset

99(reseter)

43(162)

A
2

8

B
2

7

A
1

1
0

C
0

1
3

B
1

1
1

S
4

1
5

S
3

2

C
4

1
4

A
4

1

B
4

1
6

A
3

3

B
3

4

S
2

6

S
1

9

39(93)
40(94)
41(96)
42(97)

U37

74LS194D

A
3

B
4

C
5

D
6

SL
7

QA
15

QB
14

QC
13

QD
12

SR
2

~CLR
1

S0
9

S1
10

CLK
11

44(85)
45(98)
46(99)
47(101)

4
7
(1
0
1
)

4
6
(9
9
)

4
5
(9
8
)

4
4
(8
5
)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

G
N
D
(0
)

G
N
D
(0
)

f iv e(36)

30(107)
31(104)
32(103)
33(102)V

C
C
(V
C
C
)

U48A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U48B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7 U39A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U39B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

9
9
(r
e
s
e
te
r)

fi
v
e
(3
6
)

fi
v
e
(3
6
)

V
C
C
(V
C
C
)

.25(152)

.25(152)

.25(152)

c
lk
(7
8
)

clk(78) auto clk test line

money buttons

Buttons

c
lk
(7
8
)

99(reseter)

51(109)

52(111)

5
1
(1
0
9
)

5
2
(1
11
)

one(84)

47(101)
46(99)
45(98)
44(85)

0, 5 counter

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

D

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Buttons

Bus1_1re
s
e
t(
re
s
e
te
r)

D
Q
(1
2
6
)

C
Q
(1
1
6
)

B
Q
(1
2
2
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

C
Q
_
b
a
r(
11
8
)

B
Q
_
n
o
t(
1
2
3
)

AQ_not(125)

A
Q
(1
2
4
)

B
Q
_
n
o
t(
1
2
3
)

C
Q
(1
1
6
)

AQ_not(125)
BQ_not(123)

AQ(124)

CQ(116)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

D
Q
_
b
a
r(
1
2
7
)

B
Q
_
n
o
t(
1
2
3
)

A
Q
_
n
o
t(
1
2
5
)

B
Q
(1
2
2
)

D
Q
(1
2
6
)

A
Q
(1
2
4
)

C
Q
(1
1
6
)

D
Q
_
b
a
r(
1
2
7
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

V
C
C
(V
C
C
)

D
Q
(1
2
6
)

B
Q
(1
2
2
)

C
Q
_
b
a
r(
11
8
)

1 1 1

DQ(126)

CQ(116)

BQ(122)

reset(reseter)

V
C
C
(V
C
C
)

C
Q
_
b
a
r(
11
8
)

D
Q
_
b
a
r(
1
2
7
)

1

99(reseter)

clk(78)

f iv e(36)

AQ(124)

clk(121)

clk(121)

Bus1

1
3
3
(1
2
6
)

1 1 1 1 1 1 11

MSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

LSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

99(reseter)

133(126)

led1(145)

led1(145)

J Q

~QK

RESET

CLK

SET

99(reseter)

ten(77)

te
n
(7
7
)

$5

if ten(51)

if ten(51)

if ten(51)$1

4qtr(106)

one(84)

4qtr4(169)

showzero(133)

showzero(133)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

VCC

1

11

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

1

99(reseter)

.2
5
(1
5
2
)

4
q
tr
4
(1
6
9
)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Bus1_2

q0(160)

q
1
(1
5
9
)

q
2
(1
5
8
)

q
3
(1
5
7
)

q
4
(1
5
5
)

q
5
(1
5
4
)

.2
5
(1
5
2
)

9
9
(r
e
s
e
te
r)

OUT OF
ORDER
use .25c
QUARTERS

q
5
(1
5
4
)

q
4
(1
5
5
)

q
3
(1
5
7
)

q
2
(1
5
8
)

q
1
(1
5
9
)

43(162)

J Q

~QK

RESET

CLK

SET

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Bus1_3

q0(181)

q
1
(1
8
0
)

q
2
(1
7
9
)

q
3
(1
7
8
)

q
4
(1
7
7
)

q
5
(1
7
6
)

q
5
(1
7
6
)

q
4
(1
7
7
)

q
3
(1
7
8
)

q
2
(1
7
9
)

q
1
(1
8
0
)

f iv e(36)

99(reseter)

unique(201)

enabler(38)

enabler(38)

q0(160)

q
0
(1
6
0
)

to
q
tr
(8
3
)

msb(181)

m
s
b
(1
8
1
)

D Q

~Q

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

uniqueout(200)

uniqueout(200)

u
n
iq
u
e
(2
0
1
)

d
u
m
b
(1
9
3
)

toqtr(83)

Bus1

9
9
(r
e
s
e
te
r)

u
n
iq
u
e
o
u
t(
2
0
0
)

Bus1_4

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

q0(212)

msb(212)

q
1
(2
11
)

q
2
(2
1
0
)

q
3
(2
0
9
)

q
4
(2
0
8
)

q
5
(2
0
7
)

J Q

~QK

RESET

CLK

SET

uniqueout2(uniqueout2)

99(reseter)

enable10(10enabled)

m
s
b
(2
1
2
)

q
1
(2
11
)

q
2
(2
1
0
)

q
3
(2
0
9
)

q
4
(2
0
8
)

q
5
(2
0
7
)

uniqueout2

uniqueout2u
n
iq
u
e
o
u
t2
(u
n
iq
u
e
o
u
t2
)

u
n
iq
u
e
o
u
t2
(u
n
iq
u
e
o
u
t2
)

d
u
m
b
(1
9
3
)

te
n
(7
7
)

reseter

9
9
(r
e
s
e
te
r)

reseter

enable10(10enabled)

10enabled

10enabled

toqtr2

toqtr2

to
q
tr
2
(t
o
q
tr
2
)

to
q
tr
2
(t
o
q
tr
2
)

Bus1

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

J Q

~QK

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

9
9
(r
e
s
e
te
r)

toqtr1

e
n
a
b
le
1
(2
3
3
)

9
9
(r
e
s
e
te
r)

u
n
iq
u
e
o
u
t3
(2
2
7
)

onedown

onedown

o
n
e
o
u
t(
o
n
e
d
o
w
n
)

o
n
e
o
u
t(
o
n
e
d
o
w
n
)

o
n
e
(8
4
)

toqtr1

to
q
tr
3
(t
o
q
tr
1
)

to
q
tr
3
(t
o
q
tr
1
)

e
n
a
b
le
1
(2
3
3
)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Bus2

msb(236)

ls
b
(1
9
5
)

b
it
2
(2
2
2
)

m
s
b
(2
3
6
)

b
it
2
(2
2
2
)

ls
b
(1
9
5
)

uniqueout3(227)

u
n
iq
u
e
o
u
t3
(2
2
7
)

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : 2. . .

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : 4. . . .

1

 D(f r eq) : - -

0

 D(f r eq) : 2. . . .

0

 D(f r eq) : 9. . .

1

 D(f r eq) : 4. . .
1

 D(f r eq) : 2. . .

1

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : 10. . .

1

 D(f r eq) : - -

0

 D(f r eq) : 5. . . .

0

 D(f r eq) : 2. . . .

0

 D(f r eq) : 1. . . .
0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : 10. . .

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : 50. . .

1

 D(f r eq) : 2. . . .

1

 D(f r eq) : - -

1

 D(f r eq) : - -

And then I didn’t really like the way
it was all set up and kind of
cluttered, so I decided to move
some things around a little bit. I
thought it would be nice to see the
total count up top with the buttons
and controls, or where the controls
were going to be anyway. So, this is
a view of the circuit with them
changes made. As you can see this
has everything discussed thus far
implemented in the design and it
does seem to work mostly with a
few things needing to be worked
out but it is a good base for me to
start building around. What I
needed to come up with now was
and inventory system which is just
switches that are on or off sending a
signal that there is a product or
there isn’t a product. As well we
need an way to set the prices for the
items in the inventory and we also
need a way to determine the change
from a successful vend of a product
and let us not forget the good old
coin or deposit return in case
someone decides they don’t want
something after all. So, there is still
a fair amount of work ahead of me
here and I got some ideas rolling in
my brain so let me share those with
you now. For the match all I need is
a 6bit 2’s compliment
subtractor/adder that takes as one
input the bits from the product
selection line and then compares
that to the money in the machine
which will be sitting on the quarter
counter I built up. So, drop them
bits to be compared and I can use
this for verifying a good vend,
because we don’t want someone
putting a dollar in and getting a two-
dollar coffee. That means we need a
way to make sure that the money in
is equal to or greater than the item
cost. For this a couple magnitude comparators should do the trick and set them up to check more than four bits by
chaining two of them together. So, the next few things we will look at are the price setting, in order to do any comparing
we need a price to compare with and we need a way to do this. I had went through a couple different ways of doing this
and the first way was using a couple voltage toggle switch doodads but this would always have a default price on the line
which was ok but I knew I could do better than that and ultimately did. The final design can set the price on up to five
different items if really need be. With one being a default to zero for the reset but let us work there slowly.

$10

$5

$1

.25C

V
C
C
(V
C
C
)

G
N
D
(0
)

ten(1)

f iv e(2)

one(3)

.25(152)

A B C D E F G

CA

HA B C D E F G

CA

H A B C D E F G

CA

H A B C D E F G

CA

H

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

U9

7447N

A
7

B
1

C
2

D
6

OA
13

OD
10

OE
9

OF
15

OC
11

OB
12

OG
14

~LT
3

~RBI
5

~BI/RBO
4

reset reset(54)

VCC(VCC)

U14

74LS90D

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

F

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

E

2J 2Q

~2Q2K

~2CLR

2CLK

~2PR

D

1J 1Q

~1Q1K

~1CLR

1CLK

~1PR

F' E' D'

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

1D
2

1Q
5

~1Q
6

~1CLR

1

1CLK
3

~1PR

4

.25(152)

CLK(clock)

reset(54)

VCC

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

C'

1

B'

1

A'

1

Buttons

reset(54)

Bus1

CLK(clock)

.25(152)

Circuit design for a statemachine counter with a seuence of 0, 2, 5, 7

.25a(68)

.25b(65)

.25c(85)

.25a2(90)

.25b2(87)

.25c2(80)

onea(101)
oneb(99)
onec(98)
oned(96)

re
s
e
t(
5
4
)

Bus1

0, 5 counter

Ring shift counter

.2
5
a
2
(9
0
)

.2
5
b
2
(8
7
)

.2
5
c
2
(8
0
)

.2
5
a
(6
8
)

.2
5
b
(6
5
)

.2
5
c
(8
5
)

Circuit design for a statemachine counter with a seuence of 0, 2, 5, 7

one(3)

GND(0)

Bus1

reset(54)

VCC(VCC)

A
2

8

B
2

7

A
1

1
0

C
0

1
3

B
1

1
1

S
4

1
5

S
3

2

C
4

1
4

A
4

1

B
4

1
6

A
3

3

B
3

4

S
2

6

S
1

9

1 1 11 1 1 1 1

MSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

LSB

QA
12

QB
9

QD
11

QC
8

INB
1

R91
6

R92
7

R01
2

INA
14

R02
3

reset(54)

one(3)
4qtr2(133)

Bus1

qa(93)
qb(94)
qc(83)
qd(97)

qa(93)
qb(94)
qc(83)
qd(97)

U48A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U48B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7 U39A

7476N

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2 U39B

7476N

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

re
s
e
t(
5
4
)

V
C
C
(V
C
C
)

fi
v
e
(2
)

fi
v
e
(2
)

5
1
(1
0
9
)

5
2
(1
11
)

f iv e(2)

f iv e(2)

51(109)

52(111)

J Q

~QK

RESET

CLK

SET

te
n
(1
)

reset(54)

if ten(53)
showzero(4)

onea(101)
oneb(99)
onec(98)
oned(96)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

11

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

1

if ten(53)

re
s
e
t(
5
4
)

.2
5
(1
5
2
)

if ten(53)
led1(145)

VCC

C

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

B

2J
9

2Q
11

~2Q
10

2K
12

~2CLR

8

2CLK
6

~2PR

7

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

D

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Buttons

Bus1_1

D
Q
(1
2
6
)

C
Q
(1
1
6
)

B
Q
(1
2
2
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

C
Q
_
b
a
r(
11
8
)

B
Q
_
n
o
t(
1
2
3
)

AQ_not(125)

A
Q
(1
2
4
)

B
Q
_
n
o
t(
1
2
3
)

C
Q
(1
1
6
)

AQ_not(125)
BQ_not(123)

AQ(124)

CQ(116)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

D
Q
_
b
a
r(
1
2
7
)

B
Q
_
n
o
t(
1
2
3
)

A
Q
_
n
o
t(
1
2
5
)

B
Q
(1
2
2
)

D
Q
(1
2
6
)

A
Q
(1
2
4
)

C
Q
(1
1
6
)

D
Q
_
b
a
r(
1
2
7
)

A
Q
(1
2
4
)

D
Q
_
b
a
r(
1
2
7
)

V
C
C
(V
C
C
)

D
Q
(1
2
6
)

B
Q
(1
2
2
)

C
Q
_
b
a
r(
11
8
)

1 1 1

DQ(126)

CQ(116)

BQ(122)

reset(54)

V
C
C
(V
C
C
)

C
Q
_
b
a
r(
11
8
)

D
Q
_
b
a
r(
1
2
7
)

1

AQ(124)

CLK(121)

CLK(121)

showzero(4)

f iv e(2)

CLK(clock)

re
s
e
t(
5
4
)

re
s
e
t(
5
4
)

5
+
5
(1
2
6
)

5+5(126)

1(69)

2(70)

3(71)

4(72)

5(73)

6(74)

7(75)

8(26)

9(41)

10(34)

11(32)

12(38)

13(30)

14(35)

15(36)

16(37)

17(33)

18(39)

19(42)

20(43)

21(44)

22(46)

23(49)

24(47)

25(55)

26(45)

27(48)

28(50)

1
(6
9
)

2
(7
0
)

3
(7
1
)

4
(7
2
)

5
(7
3
)

6
(7
4
)

7
(7
5
)

V
C
C
(V
C
C
)

8
(2
6
)

9
(4
1
)

1
0
(3
4
)

11
(3
2
)

1
2
(3
8
)

1
3
(3
0
)

1
4
(3
5
)

G
N
D
(0
)

1
5
(3
6
)

1
6
(3
7
)

1
7
(3
3
)

1
8
(3
9
)

1
9
(4
2
)

2
0
(4
3
)

2
1
(4
4
)

V
C
C
(V
C
C
)

2
2
(4
6
)

2
3
(4
9
)

2
4
(4
7
)

2
5
(5
5
)

2
6
(4
5
)

2
7
(4
8
)

2
8
(5
0
)

V
C
C
(V
C
C
)

V
C
C
(V
C
C
)

led1(145)

VCC(VCC)

GND(0)

4qtr2(133)

D Q

~Q

RESET

CLK

SET

4qtr2(133)

o
n
e
a
(1
0
1
)

o
n
e
b
(9
9
)

o
n
e
d
(9
6
)

o
n
e
d
(9
6
)

o
n
e
c
(9
8
)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

V
C
C
(V
C
C
)

re
s
e
t(
5
4
)

m
a
g
1
(5
6
)

m
a
g
2
(6
3
)

m
a
g
3
(8
4
)

m
a
g
4
(1
0
4
)

m
a
g
5
(1
0
8
)

mag6(110)

m
a
g
1
(5
6
)

m
a
g
2
(6
3
)

m
a
g
4
(1
0
4
)

m
a
g
3
(8
4
)

m
a
g
5
(1
0
8
)

m
a
g
6
(1
1
0
)

Bus1

Bus1_3

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

q0(167)

q
1
(1
8
0
)

q
2
(1
7
9
)

q
3
(1
6
4
)

q
4
(1
7
7
)

q
5
(1
6
1
)

msb(167)

J Q

~QK

RESET

CLK

SET

m
s
b
(1
6
7
)

q
1
(1
8
0
)

q
2
(1
7
9
)

q
3
(1
6
4
)

q
4
(1
7
7
)

q
5
(1
6
1
)

D Q

~Q

RESET

CLK

SET

u
n
iq
u
e
o
u
t(
1
2
3
4
)

e
n
a
b
le
r(
1
9
0
)

re
s
e
t(
5
4
)

u
n
iq
u
e
o
u
t(
1
2
3
4
)

e
n
a
b
le
r(
1
9
0
)

re
s
e
t(
5
4
)

u
n
iq
u
e
(2
0
1
)

fi
v
e
(2
)

u
n
iq
u
e
o
u
t(
1
2
3
4
)

u
n
iq
u
e
(2
0
1
)

to
q
tr
(1
9
5
)

to
q
tr
(1
9
5
)

1234

1234

.2
5
(1
5
2
)

CLK(clock)
CLK(clock)

C
L
K
(c
lo
c
k
)

Bus1_2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3
1CLK

1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

q0(193)

q
1
(1
9
2
)

q
2
(1
8
1
)

q
3
(1
7
8
)

q
4
(1
7
2
)

q
5
(1
6
6
)

msb(193)

m
s
b
(1
9
3
)

q
1
(1
9
2
)

q
2
(1
8
1
)

q
3
(1
7
8
)

q
4
(1
7
2
)

q
5
(1
6
6
)

D Q

~Q

RESET

CLK

SET

Bus1

enable10

clock

enable10clock

e
n
a
b
le
1
0
(e
n
a
b
le
1
0
)

C
L
K
(c
lo
c
k
)

re
s
e
t(
5
4
)

u
n
iq
u
e
o
u
t2
(u
n
iq
u
e
o
u
t2
)

toqtr2

uniqueout2

uniqueout2
u
n
iq
u
e
o
u
t2
(u
n
iq
u
e
o
u
t2
)

uniqueout2(uniqueout2)

crazy10

crazy10

c
ra
z
y
1
0
(c
ra
z
y
1
0
)

J Q

~QK

RESET

CLK

SET

c
ra
z
y
1
0
(c
ra
z
y
1
0
)

te
n
(1
)

re
s
e
t(
5
4
)

10enabled

10enabled

e
n
a
b
le
1
0
(e
n
a
b
le
1
0
)

toqtr2

to
q
tr
2
(t
o
q
tr
2
)

to
q
tr
2
(t
o
q
tr
2
)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

J Q

~QK

RESET

CLK

SET

D Q

~Q

RESET

CLK

SET

toqtr1

toqtr1

onedown

onedown

ls
b
(7
8
)

b
it
2
(2
2
2
)

m
s
b
(2
2
7
)

b
it
2
(2
2
2
)

ls
b
(7
8
)

Bus1o
n
e
(3
)

o
n
e
o
u
t(
o
n
e
d
o
w
n
)

re
s
e
t(
5
4
)

u
n
iq
u
e
o
u
t3
(2
2
7
)

o
n
e
o
u
t(
o
n
e
d
o
w
n
)

e
n
a
b
le
1
(2
3
3
)

e
n
a
b
le
1
(2
3
3
)

C
L
K
(c
lo
c
k
)

to
q
tr
3
(t
o
q
tr
1
)

u
n
iq
u
e
o
u
t3
(2
2
7
)

uniqueout3(227)

re
s
e
t(
5
4
)

A

1J
4

1Q
15

~1Q
14

1K
16

~1CLR

3

1CLK
1

~1PR

2

Bus2

msb(227)

to
q
tr
3
(t
o
q
tr
1
)

mag6(110)

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -
1

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

1

 D(f r eq) : - -
1

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) . . .

0

 D(f r eq) . . .

0

 D(f r eq) . . .
0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

0

 D(f r eq) : - -
0

 D(f r eq) : - -

1

 D(f r eq) : - -

 D(f r eq) : - -

 D(f r eq) : - -

0

 D(f r eq) : - -

 D(f r eq) : - -

1

 D(f r eq) : . . .

1

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

0

 D(f r eq) : - -

PRICE SETTING design #1

This design was good and actually worked ok but as I was researching and trying to find a better way, I ultimately landed
on 4bit DIIP Switches which ultimately led to the 6 bit DIP Switches that are currently in use in the design. Here are the
4bit ones:

So, these worked out wonderful for my design and I ultimately used this means as well for setting the sequence in the

quarter’s counter display on the return money output. All I have it doing for that is taking as input the A and B spots and

nothing in the C so that gives a possible 4 different outcomes which I use to drive the 0, 2, 5, and 7. As well as this same

design turned to six bit for the price setting on the final schematic design. So, after having a means of selecting the

prices I needed a way to compare the two things, money in to item cost. With this was the use of the two 7485 four bit

magnitude comparators which linked together can now compare two 8bit string and for this project the most we

needed was six bits so we didn’t need to use the last two bits so I just tied them to ground for safe keeping. Here is a

look at the comparator circuit now

+
-

1 2 1 2

+
-

1 2 1 2

B3 B2 B1 B0 A4 A3 A2 A1

COFFEE PRICE SETCOCOA PRICE SET

Bus2_1

1 0

c
o

c
o

a

J Q

~QK

RESET

CLK

SET

c
o

ff
e

e9
0

9
0

A0A5B4B5

+
-

1 2 1 2

2345
9

0

9
0

c
o

c
o

a

c
o

c
o

a

a
0

a
1

a
2

a
3

a
4

a
5

b
0

b
1

b
2

b
3

b
4

b
5

a
0

b
0

a
1

b
1

a
2

b
2

a
3

b
3

a
4

b
4

a
5

b
5

p0p1p2p3p4p5

PRICE SET SWITCHES
c

o
ff

e
e

c
o

c
o

a

B3 A3 B2

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

A
1

B
2

C
3

G1
6

~G2A
4

~G2B
5

Data selector for setting up for 4 lines
each with its own 4bit sequence so the
10th place (.1) which will be either
0, 2, 5, 7 will display properly on display B.

CHANGE MODULE PART B)
for displaying the .10's place
of the money dispay F.

What that OR gate goes up to that you are not seeing here is a line to the BUS named vend_ok. This is one of the

required signals used for verifying a successful vend. The other two lines you are seeing are the one used for activating

the change dispenser and the other used to tell the customer to add money if they hadn’t added enough yet after

making their selection. This one thing is why I decided against using a money setting scheme that had a default price on

the line is the fact that is would always start off by saying add more money to the machine. I didn’t particularly like that,

so I had to find a better way. So now it will only tell you to add more money after a selection is made if enough money

hasn’t been added yet.

After we do out comparing, we need to do some math and for that we are going to need another kind of IC. I ended up

using two 7483’s which are four-bit full adders with fast carry. I had already used one of these earlier in my design so

figured I would stay with like chips in my circuit if possible. My final design uses 7 of these chips in it. The reason for that

is because when I built up the circuit to add six to the BCD counters they use two of the 7483’s each as well and I needed

them for both displays so that is why it got up to seven. I originally thought I would not need to use them because the

way I was pulling data from the counters at certain times I really thought I had covered my bases and would get proper

display after a 1001 but I was sadly mistaken and in some of my later testing there was bugs popping up that the only

real solution was to add 6. Or maybe not the only but was by far the industry standard way to achieve what I wanted to

achieve so I had decided I better add these to the design as well and I was starting to think I needed to absolutely

incorporated it into the change

display at point zero instead of

waiting till the very end to try

and add it. That circuit looks

something like this actually:

A2
13

B2
14

A1
12

B1
11

OAGTB
5

A0
10

B0
9

A3
15

B3
1

OAEQB
6

OALTB
7

AEQB
3

ALTB
2

AGTB
4

A2
13

B2
14

A1
12

B1
11

OAGTB
5

A0
10

B0
9

A3
15

B3
1

OAEQB
6

OALTB
7

AEQB
3

ALTB
2

AGTB
4

A>BA=BA<B

p0
t0
p1
t1
p2
t2
p3
t3

p4
t4
p5
t5

add_money change

Money comparator circuit

S
U
M
_
4

1
0

S
U
M
_
3

1
3

S
U
M
_
1

4
S
U
M
_
2

1

C
4

9

B
4

1
1

A
4

1
2

B
3

1
5

A
3

1
4

B
2

2

A
2

3

B
1

6

A
1

5

C
0

7

S
U
M
_
4

1
0

S
U
M
_
3

1
3

S
U
M
_
1

4
S
U
M
_
2

1

C
4

9

B
4

1
1

A
4

1
2

B
3

1
5

A
3

1
4

B
2

2

A
2

3

B
1

6

A
1

5

C
0

7

out to the ones display 7447

to the 7447 controling
the MSB display

Then we have the circuit that does the math. This was the two 7483 like I was discussing which are the same chip I just

showed that added 6 to the binary number to correct the BCD number. It is just set up a little different that’s all and its

rigged so it can either do adding or do subtraction. In this circuit we need it to subtract though I left an internal switch

the owner could make it add if they wanted to collect more money, someone buys a coffee and all of a sudden they owe

you another 1.75, what is going on. Sorry another bad joke. What documentation wouldn’t be complete without a few

bad jokes, right.

The 8-bit 2’s complement subtractor

This is connected to the price selection bits and the quarter counting bits so when there is more money then the item it

will activate and display the change when there is a successful vend.

On that note how do we verify that there is a successful vend you ask? Well I built up a circuit that has an 2-input AND

gate running to the clk and in the and gate is one line from the supply sensor and another from the item selected signal

so in order for it to toggle HIGH there needs to be both conditions met and if they are met then we can say ok to the

vend line when it is asking if this is an ok vend. The circuit for verifying supply looks something like this:

A
2

8

B
2

7

A
1

1
0

C
0

1
3

B
1

1
1

S
4

1
5

S
3

2

C
4

1
4

A
4

1

B
4

1
6

A
3

3

B
3

4

S
2

6

S
1

9

A
2

8

B
2

7

A
1

1
0

C
0

1
3

B
1

1
1

S
4

1
5

S
3

2

C
4

1
4

A
4

1

B
4

1
6

A
3

3

B
3

4

S
2

6

S
1

9

7 6 5 4 3 2 1 0

add

p0_1p1_1p2_1p3_1p4_1p5_1

t0_1
t1_1
t2_1
t3_1
t4_1
t5_1

lsbchange

1change

q1q2q3q4

SUB

adder/subtractor that is used to display the change due

In testing for setting up a stock resupply reset so that you didn’t need to re-add money every time items were added

back to the stock line. All you would have to do is re-enter the items you wanted to order. I also set up a bunch of JK FF

IC’s to control the display LEDS and Sensor information they are smaller and use much less space setting up and I

probably could of used them all over this design to make it a bit simpler looking though you wouldn’t know at first

glance what you were looking at. These little chips look like this

Cute little suckers if you ask me. And I used a bunch of these in the

design to turn on lights and switch displays and to do other various task

that I would consider just busy work to make things more

understandable, like why didn’t I get my coffee with cream and sugar?

Oh because that light there says that it is out of creamer oh and look

there, there was already a light displayed as soon as the sensors no

longer detect a stock supply but we cannot count on a customer to look

to these lights before ordering every time so there needed to be some

way to tell them after an unsuccessful vend what was up. There is also a JK FF set up in toggle with an 8-input or gate

that has all the possible vend conditions running to it so if it is a successful vend it will toggle and then there is another

with the unsuccessful conditions that set off the NO VEND condition.

That is the circuit, I am sure that I have missed a few minor details but these are the circuit modules that make this

circuit work and I think this project was by far some of the most fun and stress that I’ve willingly put myself through. I

am a perfectionist which isn’t always a good thing, especially when you are running against a clock, obvious race

condition there, one that if I don’t flex a bit on my standards will surely lose. This design is fully functioning and meets

every design requirement as stated in the project outline. I believe if I had just a bit more time I could have done even

better, possibly eliminating some unneeded circuity and increased simulation speeds. To note on researching simulation

times in multiSIM there is no way to simulate in real world timing like I would have liked due to all the mathematical

engines calculating underneath it all there is a heavy toll on the processing power. I learned there is a time scale in the

lower right-hand corner that is measuring the time the circuit would of taken to run in the real world had it been a real

circuit and not a simulation. This is measured in milliseconds and it takes about a min of actual time in the simulation to

simulate what would have taken an actual circuit about a millisecond. That I found to be pretty useful and interesting.

The last page of this documentation is a view of all these pieces put together in the working circuit. I have also included

a 3x4 printout of the circuit blueprint for you to keep for future reference should you ever feel the need. Thank you,

John.

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

J Q

~QK

RESET

CLK

SET

~1CLR
1

1J
2

1K
3

1CLK
4

~1PRE
5

1Q
6

~1Q
7

GND
8

~2Q
9

2Q
10

~2PRE
11

2CLK
12

2K
13

2J
14

~2CLR
15

VCC
16

~1CLR
1

1J
2

1K
3

1CLK
4

~1PRE
5

1Q
6

~1Q
7

GND
8

~2Q
9

2Q
10

~2PRE
11

2CLK
12

2K
13

2J
14

~2CLR
15

VCC
16

